设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]用数学归纳法用数学归纳法证明 设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 16:33:58
设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]用数学归纳法用数学归纳法证明 设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]

设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]用数学归纳法用数学归纳法证明 设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]
设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]用数学归纳法
用数学归纳法证明 设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]

设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]用数学归纳法用数学归纳法证明 设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]
本题你在(n-1)前少打了一个f.
当n=1时,f(1)=1,0=f(1)-1成立;
设当n=k时此式成立,即f(1)+f(2)+...+f(k-1)=k[f(k)-1]
当n=k+1时,f(1)+f(2)+...+f(k-1)+f(k)=k[f(k)-1]+f(k)=(k+1)f(k)-k
而(k+1)[f(k+1)-1]=(k+1)[f(k)+1/(k+1)-1]=(k+1)f(k)+1-k-1=(k+1)f(k)-k
即f(1)+f(2)+...+f(k)=(k+1)[f(k+1)-1]成立.
综上所述,f(1)+f(2)+...+f(n-1)=n[f(n)-1]成立.

Proof that P(n) is true for f(1)+f(2)+....+(n-1)=n·[f(n)-1] where f(n)=1+1/2+1/3+.....+1/n

f(1) = 1
f(2) = 1 + 1/2

When n=2
LHS of the above equation = f(1) = 1
RHS of ...

全部展开

Proof that P(n) is true for f(1)+f(2)+....+(n-1)=n·[f(n)-1] where f(n)=1+1/2+1/3+.....+1/n

f(1) = 1
f(2) = 1 + 1/2

When n=2
LHS of the above equation = f(1) = 1
RHS of the above equation = 2 * (f(2)-1) = 2* (1/2) = 1
P(2) is true. ........................................................ (1)

Now, assume the P(n) holds, so we have
f(1) + (f2) +.... + f(n-1) = n * { f(n) -1} ....................................................... (2)

Based on the definiton of f(n), we know, f(n) = f(n+1) - 1/ (n+1), and so

f(1) + (f2) + .... + f(n-1) + f(n)
= n * { f(n) - 1 } + f(n)
= (n+1) * { f(n) } -n
= (n+1) * { f(n) - 1} +1
= (n +1) * { f(n+1) - 1 / (n+1) - 1} +1
= (n +1) * { f(n+1) - 1}

so we can deduce that p(n+1) holds if p(n) holds ...............................................(3)

By mathematical induction, p(n) holds all n as integers >= 2.

收起